A Data-driven Prognostic Approach Based On Wavelet Transform And Extreme Learning Machine
2017
Autre
Communications Nationales

Université M'hamed Bougara - Boumerdes

L
Laddada, Sofiane
B
Benkedjouh, Tarak
S
Si- Chaib, M. O.
D
Drai, R.

Résumé: The monitoring of a cutting tool is needed for the prediction of impending faults and estimating its Remaining Useful Life (RUL). Implementing a robust Prognostic and Health Management (PHM) system for a high speed milling CNC cutter remains a challenge for various industries to reach improved quality, reduced downtime, increased system safety and lower production costs. The purpose of the present paper is health assessment and RUL estimation of the cutting tool machines. To do so, an approach based the use of Wavelet Packet Transform (WPT) and Extreme Learning Machine (ELM) for tool wear condition monitoring is proposed. Among the main steps is feature extraction where the relevant features of raw data are computed in the form of nodes energy using WPT. The extracted features are then fed to the learning algorithm ELM; the main idea is that ELM involves nonlinear regression in a high dimensional feature space for mapping the input data via a nonlinear function to build a prognostics model. The method was applied to real world data gathered during several cuts of a milling CNC tool. Results showed the significance performances achieved by the WPT and ELM for tool wear condition monitoring.

Mots-clès:

feature extraction
prognostic
elm
wpt
rul
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft