Rainfall–runoff Modelling Using Octonion-valued Neural Networks
Résumé: Rainfall–runoff modelling is at the core of any hydrological forecasting system. The high spatio-temporal variability of precipitation patterns, complexity of the physical processes, and large quantity of parameters required to characterize a watershed make the prediction of runoff rates quite difficult. In this study, a hyper-complex artificial neural network in the form of an octonion-valued neural network (OVNN) is proposed to estimate runoff rates. Evaluation of the proposed model is performed using a rainfall time series from a raingauge near a Canadian watershed. Results of the artificial intelligence-generated runoff rates illustrate its capacity to produce more computationally efficient runoff rates compared to those obtained using a physically based model. In addition, training the data using the proposed OVNN vs. a real-valued neural network shows less space complexity (1*3*1 vs. 8*10*8, respectively) and more accurate results (0.10% vs. 0.95%, respectively), which accounts for the efficiency of the OVNN model for real-time control applications
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!