Stick-slip Vibration Suppression In Drill String Using Observer-based Lqg Controller
2022
Autre
Publications Internationales

Université M'hamed Bougara - Boumerdes

R
Riane, Rami
D
Doghmane, Mohamed Zinelabidine
K
Kidouche, Madjid
T
Tee, Kong Fah
D
Djezzar, Sofiane

Résumé: Hydrocarbon exploration and production activities are guaranteed through various operations including the drilling process, which is realized by using rotary drilling systems. The process involves crushing the rock by rotating the drill bit along a drill string to create a borehole. However, during this operation, violent vibrations can occur at the level of the drill string due to its random interaction with the rocks. According to their axes of occurrence, there are three types of vibrations: axial, lateral, and torsional, where the relentless status of the torsional vibrations is terminologically known as the stick-slip phenomenon. Such a phenomenon can lead to increased fatigue of the drill string and cause its abortive fracture, in addition to reducing the efficiency of the drilling process and consequently making the exploration and production operations relatively expensive. Thus, the main objective of this paper is to eliminate the severe stick-slip vibrations that appear along the drill string of the rotary drilling system according to the LQG observer-based controller approach. The rock–bit interaction term is highly nonlinear, and the bit rotational velocity is unmeasurable; an observer was first designed to estimate the unknown inputs of the model, and then the controller was implemented in the drill string model with 10 degrees of freedom. The estimation process was essentially based on surface measurements, namely, the current and rotational velocity of the top drive. Thereafter, the performance of the proposed observer-based LQG controller was tested for different simulation scenarios in a SimScape/Matlab environment, for which the controller demonstrated good robustness in suppressing the severe stick-slip vibrations. Furthermore, the simulation and experimental results were compared to other controllers designed for the same model; the proposed observer-based LQG controller showed better performance, and it was less sensitive to structured disturbances than H∞. Thence, it is highly recommended to use the proposed approach in smart rotary drilling systems

Mots-clès:

drill string
lqg
observer-based controller
rotary drilling systems
simscape
matlab environment
stick-slip vibrations
torque on bit
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com