Gan Data Augmentation For Improved Automated Atherosclerosis Screening From Coronary Ct Angiography
Résumé: Atherosclerosis is a chronic medical condition that can result in coronary artery disease,strokes, or even heart attacks. early detection can result in timely interventions and save lives.OBJECTIVES: In this work, a fully automatic transfer learning-based model was proposed for Atherosclerosisdetection in coronary CT angiography (CCTA). The model’s performance was improved by generating trainingdata using a Generative Adversarial Network.METHODS: A first experiment was established on the original dataset with a Resnet network, reaching 95.2%accuracy, 60.8% sensitivity, 99.25% specificity and 90.48% PPV. A Generative Adversarial Network (GAN) wasthen used to generate a new set of images to balance the dataset, creating more positive images. Experimentswere made adding from 100 to 1000 images to the dataset.RESULTS: adding 1000 images resulted in a small drop in accuracy to 93.2%, but an improvement in overallperformance with 89.0% sensitivity, 97.37% specificity and 97.13% PPV.CONCLUSION: This paper was one of the early research projects investigating the efficiency of dataaugmentation using GANs for atherosclerosis, with results comparable to the state of the art
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!