An Intrusion Detection System Based On Federated Deep Learning
2024
Mémoire de Master
Informatique

Université Kasdi Merbah - Ouergla

T
Tedjini, Abdeldjalil
C
Chenine, Mustapha

Résumé: The development of networks and their technology has made it possible for our devices and data to be increasingly compromised, especially during data sharing and distribution. Intrusion detection systems (IDS) based on machine learning (ML) and deep learning (DL) approach can be a solution to this problem to deal with these attacks and threats. However, with many devices on our network, we may need to share data with the server for collection and training to build our model, which is still very risky for privacy and confidentiality. Federated learning (FL) is a suitable solution to this problem, which ensures that data is not shared with the server for training. Instead, it allows us to train locally and build our model. This model is then sent to the server to be aggregated and updated to build a new model, and so on. In this study, we propose a unified learning- based intrusion detection system using a neural network algorithm (CNN). This algorithm showed good results with the UNSW-NB15 dataset. In both the central and decentralized approaches, the results were close to better for current works, while ensuring data privacy and model security in the decentralized approach.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft