Automatic Classification Of Heartbeats Using Wavelet Neural Network
2012
Articles Scientifiques Et Publications

Université Abou Bekr Belkaid - Tlemcen

B
Benali, Radhwane
B
Bereksi-Reguig, Fethi
H
Hadj Slimane, Zinedine

Résumé: The electrocardiogram (ECG) signal is widely employed as one of the most important tools in clinical practice in order to assess the cardiac status of patients. The classification of the ECG into different pathologic disease categories is a complex pattern recognition task. In this paper, we propose a method for ECG heartbeat pattern recognition using wavelet neural network (WNN). To achieve this objective, an algorithm for QRS detection is first implemented, then a WNN Classifier is developed. The experimental results obtained by testing the proposed approach on ECG data from the MIT-BIH arrhythmia database demonstrate the efficiency of such an approach when compared with other methods existing in the literature.

Mots-clès:

ecg
feature extraction
qrs
classification
wnn
wavelet
cardiac arrhythmia
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft