Efficient Convolutional Neural Network For 2d Echochardiographic Images Segmentation:
2020
Mémoire de Master
Informatique

Université Abderrahmane Mira - Bejaia

D
Djouad, Mohand
D
Dada, Idriss
A
Aitmaten, Zahir

Résumé: Part of the work carried out within the framework of this thesis involves the automatic segmentation of echocardiographic images. The separation and identification of the different structures from accurate delineation, called semantic segmentation, is the first step to measure surfaces or volumes. However, segmentation in echocardiography is a particularly difficult task due to the lack of clear boundaries, a low signal-to-noise ratio, the speckled texture specific to ultrasound images, and the presence of numerous and complex image artifacts such as as reverberations and loss of signal. We have presented a fully automatic deep learning approach based on the U-NET architecture by integrating EfficientNet as an encoder. Our network has achieved 97% accuracy on training data as well as validation data, which makes our network powerful. The results of the test on the CAMUS challenge dataset clearly show this with a Dice score above 0.8. As prospects, we want to make changes to our network using the transfer learning technique in order to improve it and solve the problem of metadata of the 19 patients.

Mots-clès:

2d echochardiographic
application on camus dataset
efficient convolutional*
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com