Classification Des Documents Par Apprentissage .
2010
Mémoire de Magister
Informatique

Université Ibn Khaldoun - Tiaret

M
Mostefaoui, Sid Ahmed+ Mokhtar

Résumé: L’apprentissage du support vector machine (SVM) mène à un problème d’optimisation quadratique sous contraintes linéaires bornées. Malgré ce problème est claire, Il devient impossible, en termes de stockage mémoire et temps d’apprentissage, d’être résolu pour un nombre d’exemples d’apprentissage très élevé. Pour l’objectif de réduire le temps d’apprentissage, on propose ici un algorithme qui s’inspire de la méthode de décomposition proposé par Osuna dédié à l’optimisation des SVMs : il segmente le problème d’optimisation initial en sous problèmes calculable par la machine en terme de temps CPU et stockage en mémoire, la solution obtenue s'avère en pratique plus parcimonieuse que celle trouvée par l’approche d’Osuna en qualité de temps d’apprentissage , tout en offrant des performances similaires.

Mots-clès:

représentation vectorielle
classification
apprentissage
support vector machines (svm)
optimisation quadratique
décomposition
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft