Diagnosis Of Rotor Fault Using Neuro-fuzzy Inference System
Résumé: The three-phase induction machine (IM) has a large importance and it is widely used as electromechanical system device, and because of their; robustness, reliability, and simple design with the well developed technologies. In spite of all cited advantages, the induction machines are suscptible to various types of electrical and mechanical faults that can lead easly to excessive downtimes, which can lead to tuge losses in terms of maintenance and production. This work presents a reliable approach for diagnosis and detection of broken bar faults in induction machine. The detection of faults is based on monitoring of the stator current signal. Also the calculation of relative energy value for each level of signal decomposition is determinated by using package wavelet, and this method will be useful as data input of Adaptive Neuro-Fuzzy Inference System (ANFIS). In the ANFIS approach the adaptive Neuro-Fuzzy inference system is able to identify the rotor of induction machine state with high precision.This method is applied by using the MATLAB®/Simulink software.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!