Application Des Techniques Des Métaheuristiques Pour L’optimisation De La Tâche De La Classification De La Fouille De Données
2012
Mémoire de Magister
Mathématiques Et Informatique

Université Des Sciences Et De La Technologie Mohamed-boudiaf - Oran

A
Alaoui, Abdiya

Résumé: La sélection d’attributs est une étape de prétraitement qui joue un rôle important dans la fouille de données. Elle permet de représenter un sous ensemble de données à partir d’un ensemble volumineux de données et d’éliminer les données redondantes, non pertinentes ou bruitées. Il y a plusieurs avantages de la sélection de sous ensemble d’attributs : Elle facilite la visualisation des données et fournit une meilleure compréhension. Elle réduit la complexité de données d’apprentissage qui va conduire à la réduction du temps de l’algorithme d’apprentissage. Un autre facteur important est la réduction de la dimension du problème, l’amélioration de la performance de la prédiction et la compréhension du modèle d’apprentissage. Ceci est réalisé en supprimant les attributs non pertinents à partir de l’ensemble total des attributs en préservant les avantages mentionnés ci-dessus. Appliquée à la tâche de la classification supervisée, la sélection d’attributs améliore la précision et la compréhension du classifieur. La recherche d’un sous ensemble d’attributs est un problème d’optimisation NP-difficile qui peut être résolu par les méta-heuristiques. Dans ce travail, nous proposons un algorithme de sélection de sous ensemble d’attributs pertinents à l’aide d’une métaheuristique « Optimisation par colonies de Fourmis » et des arbres de décisions plus précisément C4.5 pour construire un modèle d’apprentissage robuste. Les expérimentations sont réalisées sur des bases de données de l’UCI (University of California, Irvine). Les résultats expérimentaux de notre approche sont comparés à ceux obtenus par : l’Algorithme Génétique, la Recherche par Dispersion et C4.5. Les résultats obtenus sont compétitifs.

Mots-clès:

sélection d’attributs
arbres de décisions (c4
5)
fouille de données (datamining)
métaheuristiques
classification supervisée
optimisation par colonies de fourmis
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft