La Recommandation Des Localisations : Une Nouvelle Approche Basée Sur La Fouille Incrémentale Des Règles Séquentielles
2020
Mémoire de Master
Informatique

Université Kasdi Merbah - Ouergla

F
Fouzia, Belhachani
K
Khadîdja, Rouas

Résumé: In recent years, the rapid development in the technological field has stimulated the development of location acquisition and mobile communication technologies. This development has created many location services, such as the recommendation of points of interest (POI). POI recommendation consists of suggesting places that a user might be interested in visiting. The purpose of this service is to help mobile users to discover new and interesting places (for example, restaurants and shops), while on the move. In the literature, many models for recommending POIs have been proposed. These models take into account various factors such as geographic, temporal and social influences. Although these models have proven to be efficient, few of them take into account the sequential behavior of human mobility. Additionally, several models have been designed with static data in mind, thus ignoring the continuous recording and collection of check-in data in the LBSN (Location Based Social Network). This has led to the design of recommendations that must be formed from scratch to make up-to-date predictions, when new check-in data arrives. The temporal and spatial complexity of these recommenders can therefore increase considerably when applied to dynamic data. Therefore, there is a need to design incremental recommenders capable of handling dynamic data efficiently. To accommodate these limitations, this thesis proposes a new point of interest recommendation approach, called STS-Rec. The latter is mainly based on the extraction of sequential rules and it takes into account the sequential behavior of human mobility. STS-Rec first transforms mobility data into location sequences. Then, it gradually extracts sequential recommendation rules from these sequences. An experimental evaluation conducted on large-scale real-life check-in data from Brightkite shows that the proposed model outperforms the static version of the system in terms of execution time and space.

Mots-clès:

extraction incrémentale
règles séquentielles
recommandation de poi'
"modèle basé sur l'arbre"
'incremental mining
sequential rules
poi recommendation
tree-based model
النموذج المستند إلى الشجرة
poi
الاستخراج المتزا د
القواعد المتسلسلة
تو صية
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft