On Some Extended Routh–hurwitz Conditions For Fractional-order Autonomous Systems Of Order Α ∈ (0, 2) And Their Applications To Some Population Dynamic Models
2020
Articles Scientifiques Et Publications
Informatique

Centre Universitaire Abdel Hafid Boussouf - Mila

S
Safa, Bourafa

Résumé: The Routh–Hurwitz stability criterion is a useful tool for investigating the stability property of linear and nonlinear dynamical systems by analyzing the coefficients of the corresponding characteristic polynomial without calculating the eigenvalues of its Jacobian matrix. Recently some of these conditions have been generalized to fractional systems of order α ∈ [0, 1). In this paper we extend these results to fractional systems of order α ∈ [0, 2). Stability diagram and phase portraits classification in the ( τ , #)-plane for planer fractional-order system are reported. Finally some numerical examples from population dynamics are employed to illustrate our theoretical results.

Mots-clès:

fractional system routh–hurwitz criterion stability population dynamics
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft