Theme Machine Learning For Smartphone Security: Android Botnet D
2021
Mémoire de Master
Sciences Et Technologie

Université De Ghardaia

R
Reddah, Bayoub
D
Daoudi, Nessreddin

Résumé: Android is the most used mobile operating system in the world and since it is open source, hackers exploit it to perform different attacks such as executing botnet attack which allow them to control the compromised device remotely from a Command and control (C&C) server and perform other attacks such as distributed denial of service (DDOS) from the device itself without the owners’ knowledge. The aim of our study is to find a model that allows us to detect Android botnets efficiently. Our proposed method uses a single layer and multi-layer Perceptron models trained on 342 features to classify application as benign or botnet using ICSX dataset. We obtained great results from our experimental study with an accuracy of 99%.

Mots-clès:

botnet detection
android botnets
mobile botnet
machine learning
perceptron
multi-layer perceptron
static analysis
smartphone security
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft