Etat De L’art, Prédiction Et Optimisation D’intégrité De Surface Et Leur Influence Sur La Fatigue Des Composants Utilisent Réseau De Neurone Et L’algorithme Génétique
2022
Autre
Génie Mécanique

Université M'hamed Bougara - Boumerdes

B
Benallou, Mohamed Zakaria
B
Benchikh, Madani

Résumé: La rugosité de surface est un indice crucial qui est couramment utilisé dans le processus d'usinage pour évaluer la qualité ou l’intégrité de surface du produit et composants final et qui est influencé par les paramètres de coupe. Cette recherche étudie l'effet de différents paramètres d'usinage sur la rugosité de surface ; une approche d'intelligence artificielle consistant en un réseau neuronal artificiel (ANN) et un autre hybride (ANN) dont les poids sont réglés par un algorithme génétique (GA) sont introduits pour comparer l'estimation de la rugosité de surface. Pour construire une base de données pour l'ANN, les tests expérimentaux ont été adoptés à partir d'un article de recherche qui étudie la rugosité de surface moyenne Ra (valeur) pour l'aluminium après l'opération de fraisage en bout de bille dont la valeur de cette rugosité a été mesurée 84 cas en faisant varier l'angle d'inclinaison de l'axe de la fraise (φ degré), la vitesse de la broche (N tr/min), la vitesse d'avance (Vy mm/min), la profondeur de coupe radiale (avance Vx mm), la profondeur de coupe axiale (t mm). L'influence des paramètres de coupe tels que la profondeur de coupe, la vitesse d'avance et la vitesse de la broche sur la rugosité de surface a été étudiée dans la littérature et examinée en utilisant la corrélation de Pearson. Les analyses révèlent que la vitesse d'avance fy et fx sont les facteurs les plus influents sur la rugosité de surface. Le modèle ANN proposé fournit une bonne prédiction, l'erreur moyenne carrée (MSE) spécifiant la précision et l'adéquation du réseau a été trouvée égale à 0,1985 indiquant que les valeurs de rugosité de surface estimées et mesurées sont remarquablement proches les unes des autres, ce dernier modèle est plus précis en comparaison avec le modèle hybride ANN&GA avec un MSE égale à 0,3630. L'optimisation en utilisant l'algorithme génétique montre que les paramètres de coupe qui donnent la rugosité de surface optimale Ra=0.41μm dans notre cas sont les suivants : ɸ =0°, S=584(tr/min) Fy=22 (mm/min), Fx=0.4 (mm), t=0.4653 (mm).

Mots-clès:

traitements de surface
surfaces (technologie)
réseau neuronal artificiel
algorithmes génétiques
usinage
apprentissage automatique
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft