Exploration Des Données De La Médecine Personnalisée Par Des Techniques De Data Mining
2021
Thèse de Doctorat
Informatique

Université Mustapha Stambouli - Mascara

K
Kadi, Hafid

Résumé: La médecine personnalisée est actuellement en fort développement, de par son adoption dans le monde entier et principalement dans les pays développés. Les profils des patients constituent en effet le point principal sur lequel est fondé le but de cette médecine. Cette dernière vise à aider les médecins et les praticiens de la santé à prévoir des maladies, à prendre des décisions précises et à individualiser les traitements d’une manière adéquate. De plus, le profil d’un patient peut comporter une variété importante de données que ce soient des données génétiques, des biomarqueurs clés, l’historique de traitements, les facteurs environnementaux et les préférences comportementales, des images (IRM, Radio, …), etc. L’exploration de ces données par les outils de la fouille de données nécessite une suite d’opérations pour former et extraire les connaissances cachées parmi ces données. L’intérêt d’un tel processus d’automatisation de la décision médicale et d’extraction des connaissances est généralement confirmé par sa précision. Il ne faut néanmoins pas éluder les contraintes liées à la rapidité de calcul de celles-ci, pour permettre leur usage pratique. Ces travaux de thèse, intitulés « Exploration des données de la médecine personnalisée par des techniques de Data Mining », nous a conduit à la définition de deux activités importantes de la médecine personnalisée : la première porte sur la représentation de données et la seconde sur la prise de la décision médicale. Par conséquent, deux problèmes ont été identifiés. Le premier concerne la perte de données et d’information lors de la phase de représentation de l'information. Le deuxième concerne le choix de la série des traitements la plus appropriée à appliquer pour la prise de décision. La solution de la première problématique a été résolue par la proposition d’un modèle de représentation de données par région et par dispersion. Pour la deuxième problématique, nous avons proposé un modèle de prise de décision médicale réalisé reposant sur une classification de données issues de la médecine personnalisée. Ce modèle repose sur l’application de notre modèle de représentation de données et plusieurs suites de traitement et de classification. L’expérimentation de nos modèles et les résultats obtenus justifient l’utilité et la précision de nos approches. Ces solutions avantageuses, en particulier le modèle de représentation de données, peuvent être utilisées comme une plateforme exploitable pour d’autres tâches telles que l’analyse de données médicales.

Mots-clès:

médecine personnalisée
data mining
représentation de données
prise de décision médicale
séries temporelles
réduction de données
classification
clustering
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft