Identifying Regions Of Interest In Whole Slide Images Of Renal Cell Carcinoma
2021
Autre
Sciences Et Technologie

Université Belhadj Bouchaib - Ain Témouchent

D
Dr Mohammed Lamine Benomar , Dr Nesma Settouti , Dr Eric Debreuve , Dr Xavier Descombes , Dr Damien Ambrosetti

Résumé: Purpose The histopathological images contain a huge amount of information, which can make diagnosis an extremely time-consuming and tedious task. In this study, we developed a completely automated system to detect regions of interest (ROIs) in whole slide images (WSI) of renal cell carcinoma (RCC), to reduce time analysis and assist pathologists in making more accurate decisions. Methods For this purpose, the WSIs are divided into patches at high resolution and a method is proposed to classify the patches into a tumor and healthy tissue. The proposed approach is based on an efficient texture descriptor named dominant rotated local binary pattern (DRLBP) and color transformation (hematoxylin and violet channels) to reveal and exploit the immense texture variability at the microscopic high magnifications level. Thereby, the DRLBPs retain the structural information and utilize the magnitude values in a local neighborhood for more discriminative power. For the classification of the relevant ROIs, feature extraction of WSIs patches was performed on the color channels separately to form the histograms. Next, we used the most frequently occurring patterns as a feature selection step to discard non-informative features. The performances of different classifiers (k-NN, SVM and RF) on a set of 1800 kidney cancer patches originating from 12 whole slide images were compared and evaluated. Furthermore, the small size of the image dataset allows to investigate deep learning approach based on transfer learning for image patches classification by using deep features (VGG-16) and fine-tuning (ResNet-50) methods. Results High recognition accuracy was obtained and the classifiers are efficient, the best precision result was 99.17% achieved with SVM. Moreover, transfer learning models perform well with comparable performance, and the highest precision using ResNet-50 reached 98.50%. The proposed approach results revealed a very efficient image classification and demonstrated efficacy in identifying ROIs. Conclusion This study presents an automatic system to detect regions of interest relevant to the diagnosis of kidney cancer in whole slide histopathology images.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft