Classifying Covid-19 Related Tweets For Fake News Detection And Sentiment Analysis With Bert-based Models
Résumé: The present paper is about the participation of our team “techno” on CERIST’22 shared tasks. We used an available dataset “task1.c” related to covid-19 pandemic. It comprises 4128 tweets for sentiment analysis task and 8661 tweets for fake news detection task. We used natural language processing tools with the combination of the most renowned pre-trained language models BERT (Bidirectional Encoder Representations from Transformers). The results shows the efficacy of pre-trained language models as we attained an accuracy of 0.93 for the sentiment analysis task and 0.90 for the fake news detection task.
Mots-clès:
Publié dans la revue: Revue de l'Information Scientifique et Technique
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!