A Comparative Study Of Semi-supervised Clustering Methods With Pairwise Constraint
Résumé: Abstract—Semi-Supervised Clustering (SSC) is a largely unsu- pervised learning task that seeks to guide the clustering process through constraint, and combines several methods with different approaches. In this work, our interest is more focused on the semi-supervised clustering with constraint approaches, and more particularly those based on the pairwise constraint. This paper establishes a comparative study between 3 algorithms mainly: the Constrained K-means algorithm which applies constraint of comparison between pairs of objects, called COP-KMEANS, the Semi-supervised kernel clustering with relative distance Algorithm (SKLR) and the Semi-supervised Kernel Mean Shift clustering Algorithm (SKMS). Experimental results indicate that the semi-supervised kernel Mean Shift clustering method can generally outperform the other semi-supervised methods. The experimental study shows that the use of constraint can improve performance especially when the number of available labeled examples is insufficient to build a decision model.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!