Turing-hopf Bifurcation In A Diffusive Mussel-algae Model With Time-fractional-order Derivative
Résumé: In this paper, we consider a time fractional-order derivative for a diffusive mussel–algae model. The existence of pattern formation was the subject of interest of many previous research works in the case of the diffusive mussel–algae model. Examples include the Turing instability, Hopf bifurcation, Turing-Hopf bifurcation, and others. The presence of the time–fractional–order derivative never been investigated in this model. Next to it ecological relevant, it can generate some important patterns. One of these patterns is produced by the presence of the Turing-Hopf bifurcation. Therefore, our main interest is to analyze the effect of the time fractional–order derivative on the spatiotemporal behavior of the solution, which never been achieved for the mussel-algae model. Besides, Turing–Hopf was studied exclusively on the classical reaction-diffusion systems, where it was also considered for the diffusive mussel-algae model. Thus, our paper puts the fist steps on proving the existence of this type of codimension bifurcation on the diffusive systems with time fractional–order–derivative systems. Further, a suitable numerical simulations are used for confirming the theoretical obtained results.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!