Processus Weyl Presque Périodique Et Équations Différentielles Stochastiques
Résumé: La thèse est dédiée à l'étude de certaines équations différentielles à coefficients Weyl presque périodiques. Elle contient deux parties essentielles La première partie est consacrée à des problèmes déterministes. On y étudie l'existence et l'unicité d'une solution mild bornée Weyl presque périodique pour l'équation différentielle linéaire abstraite u’(t) = Au(t) + f (t) t ∈ R, dans un espace de Banach X, où A : D (A) ⊂ X → X est un opérateur linéaire (non borné) qui génère un C0-semi-groupe exponentiellement stable et f : R → X est une fonction Weyl presque périodique. Finalement, toujours dans la première partie, nous étudions l'existence et l'unicité d'une solution mild bornée Weyl presque périodique pour l'équation différentielle semi-linéaire abstraite u’ (t) = Au(t) + f (t, u(t)) t ∈ R, où f : R × X → X est une fonction Weyl presque périodique en t ∈ R uniformément par rapport aux compacts de X. Dans la deuxième partie, nous généralisons ces études au cas stochastique. Précisément, nous étudions l'existence et l'unicité de solution Weyl presque périodique en loi pour une classe d'équations différentielles stochastiques semi-linéaires, dans un espace de Hilbert séparable
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!