Neural Network Arx Model For Gas Conditioning Tower
2019
Articles Scientifiques Et Publications

Université M'hamed Bougara - Boumerdes

H
Haddouche, Rezki
B
Boukhemis, Chetate
M
Mohand Said, Boumedine

Résumé: This work focuses on the identification of the gas conditioning tower (GCT) operating in a cement plant. It is an important element in the cement production line. Mathematical modeling of such a process proves to be very complex. This is due to the phenomena that occur during the operation of the system. An artificial neural network-based auto-regressive with exogenous inputs (NNARX) model is constructed with the aim to study the system as well as used to control the process. Resulted models are tested and validated using data extracted on a GCT operating at Chlef cement plant in Algeria.

Mots-clès:

gas conditioning tower
artificial neural network
system identification
dust collector
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft