Using Machine Learning Techniques For Automatic Annotation Of Personal Image Collections
2022
Thèse de Doctorat
Informatique

Université Kasdi Merbah - Ouergla

B
Bensaci, Ramla
k
khaldi, Belal

Résumé: As imaging equipment has advanced, the number of photosets has increased, making manual annotation impractical, necessitating the development of accurate and time-efficient image annotation systems. We consider the fundamental Computer Vision problem of image annotation, where an image must be automatically tagged with a set of discrete labels that best describe its semantics. As more digital images become available, image annotation can help automatically archival and retrieval of extensive image collections.Image annotation can assist in other visual learning tasks, such as image captioning, scene recognition, multi-object recognition, and image annotation at the heart of image understanding. Much literature on AIA has been proposed, primarily in probabilistic modelling, classification-based approaches, etc. This research explores image annotation approaches published in the last 20 years. In this thesis, we study the image annotation task from two aspects. First, The focus is mainly on machine learning models and AIA techniques based on the basic theory, feature extraction method, annotation accuracy, and datasets.Second, we attempt to address the annotation task by a CNN-kNN framework. Furthermore, we present a hybrid approach that combines both advantages of CNN and the conventional concept-to-image assignment approaches. J-image segmentation (JSEG) is firstly used to segment the image into a set of homogeneous regions. A CNN is employed to produce a rich feature descriptor per area. Then, a vector of locally aggregated descriptors (VLAD) is applied to the extracted features to generate compact and unified descriptors. After that, the not too deep clustering (N2D clustering) algorithm is performed to define local manifolds constituting the feature space, and finally, the semantic relatedness is calculated for both image-concept and concept–concept using KNN regression to grasp better the meaning of concepts and how they relate. Through a comprehensive experimental evaluation, our method has indicated a superiority over a wide range of recent related works by yielding F1 scores of 58.89% and 80.24% with the datasets Corel 5k and MSRC v2, respectively. Additionally, it demonstrated a relatively high capacity for learning more concepts with higher accuracy, which results in N+ of 212 and 22 with the datasets Corel 5k and MSRC v2, respectively.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft