Rkpca-based Approach For Fault Detection In Large Scale Systems Using Variogram Method
Résumé: Principal Component Analysis (PCA)-based approach for fault detection is a simple and accurate data-driven technique for feature extraction and selection. However, PCA performs poorly if the data used has nonlinear characteristics where this type of data is widely present in most industrial processes. To overcome this drawback, Kernel PCA (KPCA) is an alternative technique used to work on this type of data but it requires more computation time and memory storage space for large-sized data sets. Many size reduction techniques have been developed to select the most relevant observations that will be employed by KPCA. This, known as Reduced KPCA (RKPCA), consequently requires less computation time and memory storage space than KPCA. Besides, it possesses the advantages of both KPCA and standard PCA. In this paper, a reduction in the size of a data set based on a multivariate variogram is proposed. According to its conventional formalism, the uncorrelated observations are selected and kept to form a reduced training data set. Afterward, the KPCA model is built through this data set for faults detection purposes. The proposed RKPCA scheme is tested using an actual involuntary process fault and various simulated sensor faults in a cement plant. Compared to other RKPCA techniques, the developed one yields better results
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!