Dynamic Performance Improvement Of Dfim Based On Hybrid Computational Technique
Résumé: This paper presents a hybrid intelligent nonlinear control, based on particle swarm optimization (PSO) technique and artificial intelligence controller (AI) to improve the dynamic performance of the system. These controllers are destined for the speed control of Doubly Fed Induction Motor (DFIM). The proportional-integral controller for speed regulation of the induction motor is the most extensively used controller. However, given the various operating conditions and the nature of parameter variability, the PI controller has some drawbacks. So, one of the frequently discussed applications of artificial intelligence (AI) in control is the replacement of a proportional integral speed controller with Artificial Neural Network (ANN) speed controller but the choice of the gain’s parameters controller is one of the main problems. So, Particle Swarm Optimization (PSO) technique on optimization performance is added to the PI and ANN controllers to find the best gain values. The simulation results for different scenarios illustrate the high performance of the proposed artificial intelligence controller for DFIM running at variable speeds in terms of consistency and stability
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!