Détection De Pathologies Mammaires Pour L'aide À L'interprétation
2020
Mémoire de Master
Informatique

Université Saad Dahleb - Blida

M
Mebarki, Sihem
M
Menseur, Kenza

Résumé: La détection du cancer du sein est un sujet de recherche d’actualité, car sa détection précoce, peut contribuer à augmenter le taux de survie des patients en leur fournissant à temps, un meilleur traitement. Un système robuste est donc nécessaire pour détecter les pathologies mammaires, car il est difficile de les identifier à un stade précoce, à partir du processus clinique normal. Les techniques de vision par ordinateur offrent une nouvelle façon de comprendre les défis, liés à l'analyse des images médicales. Ce travail présente l’exploration d'images histologiques mammaires, suivant les réseaux neuronaux convolutifs, pour la distinction des carcinomes canalaires invasifs et des tissus normaux, en vue d’une aide à l’interprétation. L'idée du choix des CNN, est leur adaptation au traitement des images ainsi que leurs performances, relativement aux techniques traditionnelles. L'ensemble de données utilisé dans le cadre de ce mémoire, présente de nombreux défis, comme le nombre réduit de cas et surtout des données déséquilibrées ; ce qui signifie qu’elles nécessitent un prétraitement. Ce travail se concentre alors, sur la réalisation d’un système qui améliore le score F1 du classificateur CNN suivant un fine-tuning, une extraction des caractéristiques et la proposition d'un modèle prédictif adapté. Les résultats des expérimentations, montrent que l’approche proposée ‘HISTOCNN’, aide à améliorer le score F1, avec une valeur de 87% et la précision avec une estimation de plus de 93%. Cette étude contribue à la détection du cancer mammaire à un stade précoce, par des images que les processus cliniques, sont incapables de détecter. Mots clés : Cancer du Sein, Image Histopathologique, Apprentissage profond, Réseau Neuronal Convolutif, Diagnostic Assisté par Ordinateur, Aide à l’Interprétation.

Mots-clès:

cancer du sein
image histopathologique
apprentissage profond
réseau neuronal convolutif
diagnostic assisté par ordinateur
aide à l’interprétation
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft