Notch Depth Identification In Cfrp Composite Beams Based On Modal Analysis Using Artificial Neural Network
2023
Autre
Communications Internationales

Université M'hamed Bougara - Boumerdes

Z
Zara, A.
B
Belaidi, I.
O
Oulad Brahim, A.
K
Khatir, S.
C
Capozucca, R.
A
Abdel Wahab, M.

Résumé: Recently, the development of optimization techniques based on artificial neural network (ANN) has shown considerable progress in the field of damage identification in composite structures, due to their simplicity, greater precision, and lower computational time compared to non-destructive testing methods (NDT). In our work, a finite element model is developed using ABAQUS software to validate the vibratory behaviors of experimental tests. Then, based on digital data extracted from a calibrated model of the damaged CFRP cantilever specimens, we used a novel artificial neural network approach to detect and identify notch depth in carbon fiber reinforced polymer (CFRP) beam based on modal analysis. The results show that ANN based on natural frequencies can be used to identify notch depth with good accuracy in composite structures

Mots-clès:

artificial neural networks (ann)
carbon fiber reinforced polymer (cfrp)
fem
notch depth identification
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Aucun fichier associé


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft