Renforcement De L’apprentissage Structurel Pour La Reconnaissance Du Diabète
2011
Mémoire de Magister
Génie Eléctrique Et Eléctronique

Université Abou Bekr Belkaid - Tlemcen

S
Settouti, Nesma

Résumé: L’intelligibilité représente la force motrice la plus importante derrière la mise en oeuvre des classifieurs à base flous pour les problèmes d’application médicale. L’expert devrait être capable de comprendre le classifieur et d’évaluer ses résultats. Les modèles à base de règles floues sont particulièrement adaptés, car ils sont constitués de simples règles linguistiques interprétables. Dans la littérature, la majorité des algorithmes basés sur un système d’inférence neuro-flous adaptatifs (ANFIS) ne fournissent pas suffisamment d’explications sur la façon d’obtenir les résultats d’inférence. Ce mémoire de Magister traite la possibilité d’augmenter l’interprétabilité du classifieur ANFIS avec l’apport de la méthode de clustering Fuzzy C-Means . Il montre comment un classifieur neuro-flou interprétable peut être obtenu par un processus d’apprentissage et comment les règles floues extraites peuvent améliorer son interprétation. Les résultats expérimentaux appliqués sur la base de données du diabète (UCI Machine Learning) montrent de fortes similitudes avec les règles appliquées par les experts. Les résultats sont comparés à d’autres travaux dans la littérature. L’approche proposée est simple et efficace pour clarifier la décision finale du classifieur, tout en préservant sa précision à un niveau satisfaisant.

Mots-clès:

classification interpretable
règles floues
fcm
neuro-flou
base de données du dépôt uci machine learning
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft