Qspr For The Prediction Of Critical Micelle Concentration Of Different Classes Of Surfactants Using Machine Learning Algorithms
Résumé: The determination of the critical micelle concentration (CMC) is a crucial factor when evaluating surfactants, making it an essential tool in studying the properties of surfactants in various industrial fields. In this present research, we assembled a comprehensive set of 593 different classes of surfactants including, anionic, cationic, nonionic, zwitterionic, and Gemini surfactants to establish a link between their molecular structure and the negative logarithmic value of critical micelle concentration (pCMC) utilizing quantitative structure-property relationship (QSPR) methodologies. Statistical analysis revealed that a set of 14 significant Mordred descriptors (SlogP, GATS6d, nAcid, GATS8dv, GATS4dv, PEOE_VSA11, GATS8d, ATS0p, GATS1d, MATS5p, GATS3d, NdssC, GATS6dv and EState_VSA4), along with temperature, served as appropriate inputs. Different machine learning methods, such as multiple linear regression (MLR), random forest regression (RFR), artificial neural network (ANN), and support vector regression (SVM), were employed in this study to build QSPR models. According to the statistical coefficients of QSPR models, SVR with Dragonfly hyperparameter optimization (SVRDA) was the most accurate in predicting pCMC values, achieving (R2 = 0.9740, Q2 = 0.9739, r 2 m = 0.9627, and ?r 2 m = 0.0244) for the entire dataset
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!