Apprentissage Profond Pour La Détection Des Tumeurs Cérébrales.
Résumé: ce mémoire explore une approche basé sur l'apprentissage profond pour la détection des tumeurs cérébrales à partir d'images IRM. Principalement, nous proposons deux contributions : un modèle de détection de tumeurs basé sur un CNN et un modèle de segmentation de tumeurs utilisant l'architecture U-Net avec apprentissage par transfert. Pour la détection de tumeurs, notre CNN a atteint une précision de 99,5 %, une perte de 2,7 % et un score F1 de 99,09 %. Pour la segmentation de tumeurs, notre modèle U-Net a atteint une précision de 97,13 %, et une perte de 1,8 %. Nos résultats démontrent l'efficacité de notre approche pour détecter avec précision la présence de tumeurs cérébrales et délimiter de manière fiable leurs contours.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!