Approches Évolutionnaires Multi-biométriques Pour L’identification Des Personnes
2019
Thèse de Doctorat
Informatique

Université Mustapha Ben Boulaid - Batna 2

B
Boucetta, Aldjia

Résumé: Cette thèse porte sur l’étude des approches évolutionnaires pour la biométrie. Précisément, l’objectif est de proposer des approches multi-biométrices efficaces pour l’authentification de personnes basées sur les signatures biométriques. Dans cette thèse, d’abord, nous proposons une nouvelle méthode de reconnaissance de la main qui combine les moments invariants d’Hu et les moments de Legendre, en tant que nouvel extracteur de caractéristiques. Puis, nous proposons l’utilisation de PSO comme technique évolutive permettant de combiner la modalité du visage, de l’iris et de palmprint au niveau du score. Dans ce système, nous utilisons trois algorithmes d’extraction de caractéristiques (transformation de Gabor, transformation DWT et transformation de Contourlet) pour extraire les principales caractéristiques biométriques. Ensuite, PCA, LDA et KFA sont utilisés pour la réduction de dimensionnalité des vecteurs de caractéristiques. Finalement, nous proposons un système biométrique multimodal efficace basé sur le Deep Learning. Pour cela, nous explorons deux approches basées sur CNN(Convolutional Neural Network) en utilisant un modèle préentraînement téléchargé de la littérature (squeezenet). Dans le premier approche, nous essayons de classer les objets en fonction de leurs caractéristiques distinctes et prenons donc une décision de classification finale basée sur les autres décisions. Nous pouvons utiliser un élément du modèle, tel que l’extracteur de caractéristiques, ou le fine-tuning en l’adaptant à notre tâche au lieu d’imagenet avec 1000 classes. Dans la deuxième approche, les vecteurs de caractéristiques sont extraits séparément, en utilisant squeezenet pour extraire les caractéristiques profondes des modalités, nous prenons les caractéristiques de la couche 66 et nous combinons ces vecteurs pour former un vecteur de caractéristiques composites. Ensuite fait une classification à l’aide de SVM.

Mots-clès:

biométrie multimodale
visage
iris
palmprint
techniques évolutives
optimisation
pso
ga
deep learning
cnn
squeezenet
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft