Deep Semi-supervised Multi-label Image Classification
Résumé: The multi-label image classification (MLC) is the process that aims to firstly learn from training set of images, where each one can belong to multiple classes and so after be able to predict more than one class label simultaneously for a new tested image. This process suffers from several problems such as overlapping meaning that may contain image labels. In this thesis, we present a Deep Semi-supervised multi-label image classification method that compose modules: CAE module and ResNet module . The first module consist of a CAE model that is used to extract the features of images. The second one, is a ResNet is used to classify the extracted features.The proposed model has been trained on public benchmark dataset and it achieves better results compared to state of the art.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!