Contribution À L'étude De La K-indépendance Dans Les Graphes
Résumé: Soit G = (V, E) un graphe simple. Un sous ensemble S de V est dit dominant de G, si tout sommet de V-S est voisin d’au moins un sommet dans S. On note la cardinalité minimum d’un ensemble dominant de G par γ(G). Lorsqu’on impose des conditions supplémentaires à l’ensemble dominant, on obtient d’autres types de domination. Par exemple, si on impose que tout sommet de V-S possède au moins k voisins dans S, on aura la k-domination et si on impose que le degré maximum du sous graphe induit par l’ensemble de sommets S est au plus k-1, on aura la k-indépendance. Dans cette thèse, on s’intéresse à l’étude de la k-indépendance et la k-domination dans les graphes, on établit des bornes pour les paramètres associés à la k-domination et la k indépendance, à savoir γk(G), Γk(G), ik(G) et βk(G). Enfin on caractérise les graphes extrémaux atteignant certaines bornes dans le cas de certaines classes de graphes simples comme les arbres et les cactus.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!