Self Organizing Map Of Artificial Neural Network For Groundwater Quality Classification In The F'kirina Plain (oum El Bouaghi Province-ne Of Algeria)
2017
Articles Scientifiques Et Publications
ASJP
Autre

Université Larbi Ben M'hidi - Om-el-bouaghi

O
Ouanes, Miyada

Résumé: The topological Self-Organizing Maps of Kohonen and other methods of artificial intelligence are effective tools for modeling and solving environmental problems. In this study, we propose an approach to classify the annual physico-chemical parameters of subterranean waters in the F'kirina plain based on the artificial neural network type. The results obtained demonstrate the presence of 4 classes and make it possible to clearly understand and visualize the spatial and temporal distribution of the physicochemical quality of subterranean waters. Class 1 shows high concentrations for all parameters, whereas class 3 is represented by very low concentrations. .

Mots-clès:

Clustering
Self organizing map
ANN
Physico-chemical parameters
Water quality
F’kirina plain.

Publié dans la revue: Journal of New Technology and Materials

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft