A Study Of Sound Event Detection Techniques For Home Activity Monitoring
Résumé: This thesis is dedicated to an experimental study of home acoustic activity monitoring within sound event detection systems. The principal goal is to develop an efficient system for activity classification using a large set of audio activities within DCASE 2018 datasets. We have built a monitoring system by extracting features (Log Mel-Band energies) from time frames of each audio signal. Then, we have trained the extracted features using a deep neural network, namely Convolutional Neural Network (CNNs). Eventually, our study shows that the combination of Log Mel-band Energy features and CNN learning algorithm helps getting a good performance that allows the system to show a strong generalization ability. Key words: Acoustic Activity Monitoring, Sound Event Detection, Feature Extraction, Machine Learning.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!