Ecg Beats Classification With Interpretability
2022
Autre
Communications Internationales

Université M'hamed Bougara - Boumerdes

H
Hammachi, Radhouane
M
Messaoudi, Noureddine
B
Belkacem, Samia

Résumé: Recently, a lot of emphasis has been placed on Artificial Intelligence (AI) and Machine Learning (ML) algorithms in medicine and the healthcare industry. Cardiovascular disease (CVD), is one of the most common causes of death globally, and Electrocardiogram (ECG) is the most widely used diagnostic tool to investigate this disease. However, the analysis of ECG signals is a very difficult process. Therefore, in this work, automated classification of ECG data into five different arrhythmia classes is proposed, based on MIT-BIH dataset. Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) Deep Learning (DL) models were used. The black-box nature of these complex models imposes the need to explain their outcomes. Hence, both Permutation Feature Importance (PFI) with Gradient-Weighted Class Activation Maps (Grad-CAM) interpretability techniques were investigated. Using the K-Fold cross-validation method, the models achieved an accuracy of 97.1% and 98.5% for CNN and LSTM, respectively

Mots-clès:

arrhythmia
electrocardiogram
healthcare
interpretability
machine learning
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Aucun fichier associé


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft