Emergent Geometry And Gauge Theory In 4 Dimensions And The Noncommutative Torus
Résumé: A detailed Monte Carlo calculation of the phase diagram of bosonic mass deformed IKKT Yang-Mills matrix models in three and six dimensions with quartic mass deformations is given. Background emergent fuzzy geometries in two and four dimensions are observed with a fluctuation given by a non commutative U(1) gauge theory very weakly coupled to normal scalar fields. The geometry, which is determined dynamically, is given by the fuzzy spheres S 2 N and S 2 N ×S 2 N respectively. The three and six matrix models are effectively in the same universality class. For example, in two dimensions the geometry is completely stable, whereas in four dimensions the geometry is stable only in the limit M −→ ∞, where M is the mass of the normal fluctuations. The behavior of the eigenvalue distribution in the two theories is also different. We also sketch how we can obtain a stable fuzzy four-sphere S 2 N × S 2 N in the large N limit for all values of M as well as models of topology change in which the transition between spheres of different dimensions is observed. The stable fuzzy spheres in two and four dimensions act precisely as regula tors which is the original goal of fuzzy geometry and fuzzy physics. Fuzzy physics and fuzzy field theory on these spaces are briefly discussed.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!