Sur Le Béta-développement En Base Algébrique
Résumé: Soit un nombre réel supérieur à 1. Le bêta-développement d.un réel quelconque x en base , est l'un des développements de x, en base , qui généralise la représentation usuelle de x en base entière. Ce développement définie par Rényi [7] et étudié par plusieurs auteurs, peut être détérminé par un algoritme. Soit Per ( )l.ensemble des réels qui ont un béta développement périodique. Il est facile de voir que Per ( ) Q( ), ou Q est le corps des rationnels. Dans [9], Schmidt a montré que si Per ( ) = Q( ) alors, il est un nombre de Pisot ou bien un nombre de Salem et de plus lorsque il est un nombre de Pisot alors l'égalité Per ( ) = Q( ) a toujours lieu l.existence d'un nombre de Salem satisfaisant la relation Per( ) = Q( ) est un problème ouvert.On montre dans cet éxposé quelques résultats sur le béta- développement en base de Salem,notamment un résultat de Boyd [2] sur les nombres de Salem quartiques
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!