La Régularisation De Tikhonov Pour Les Problèmes Mal Posés
Résumé: Dans ce travail nous nous intéressons à la solution approchée de l'équation linéaire où A est l'opérateur injectif et compact, cette équation admet une solution unique au sens direct ou au sens des moindres carrés à condition que le membre droit f soit dans R(A) ou dans ( ) ( ) , respectivement. En raison de la plage R(A) non fermée, la solution n'est pas stable. Par ailleurs, si A est définie positif on peut remplacer l'équation d'origine par l'équation auxiliaire où sa solution existe, stable et converge vers la solution exacte de l'équation d'origine lorsque α tend à zéro. Et dans ce travail, nous présentons une solution numérique pour équation intégrale singulière de la première espèce sur le contour lisse orienté avec noyau de type Cauchy, pour celui-ci nous utilisons une approximation linéaire adaptée construite par l'auteur pour cette équation, basée sur la règle trapézoïdale. De nombreux exemples sont traités afin de prouver l'efficacité de cette approximation
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!