A New Neural Networks Approach Used To Improve Wind Speed Time Series Forecasting
Résumé: Generally, wind turbinesconvert the energy of wind into electricity. In this order, it is essential to predict accurately this source’s availability and intensity at the same location and height where wind electric generators will be installed, and therefore obtain reliable time-series data. The problem of meteorological time series prediction can be formulated as a system identification problem. To improve the prediction of these meteorological time series, we describe then use an application of a new neural networks approach inthis paper. This novel, robust, and reliable forecasting method is based on the application of a new learning algorithm that allows a renewal of learning data, with time. For our algorithm a neural network is developed to estimate just one value y (t+1), then it is taken up with a new learning set enriched by data freshly measured. The obtained results showed a good agreement between measured and predicted series, and the mean relative error over the whole data set, which are not exceeding 5 %
Mots-clès:
Publié dans la revue: Algerian Journal of Renewable Energy and Sustainable Development
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!