Statistical And Gis Approaches To Landslide Susceptibility Assessment And Mapping In Mila Basin (ne Algeria)
2020
Thèse de Doctorat
Biologie Et Sciences De La Nature Et De La Vie

Université Larbi Tebessi - Tebessa

M
Merghadi, Abdelaziz

Résumé: The severe landslides affecting Mila Basin (located in the North-East region of Algeria) are serious threats not only to the environment and the local populations but also inflecting economic burdens to local authorities by the non-ending reconditioning and restoration projects. In addition, these landslides affect the current landscape evolution and the geodynamics of the basin. Therefore, predicting and delineating landslides are crucial tasks to reduce their associated damages. However, landslide risk prevention requires prone areas delineation using an assessment that can integrate into GIS environments and considering the spatial and temporal space component of the basin. This should theoretically provide probabilities for both the spatial and temporal components of this hazard in the form of susceptibility toward landsliding. That being said, no systematic and accountable landslide susceptibility models or even susceptibility maps are available for the basin yet, despite the tremendous losses. In an attempt to fill this gap, an advanced statistical-based modeling approach (i.e. Machine Learning) was used to provide state-of-the-art models capable of providing the highest landslide prediction capabilities. The main research workflow was rather simplistic as it focuses essentially on elaborating predictive models using some advanced techniques that can be integrated successfully in GIS environments in order to develop customized models for the basin. A partial focus was given to mapping and zoning areas toward landsliding. The obtained results highlight the overall benefits of using advanced machine learning methods for landslide susceptibility assessment, as the implemented models exhibit reasonably good predictive performance (AUC>0.85, Acc> 78% and kappa>0.56). The generated landslide susceptibility maps were proven to be useful as a technical framework for spatial prediction to develop countermeasures and regulatory policies by decision-makers to minimize the damages introduced by either existing or future landslides.

Mots-clès:

landslide
susceptibility mapping
susceptibility assessment
machine learning
gis
mila basin
algeria
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft