Deep Learning-based Anomaly Detection In Network Traffic Patterns
2024
Mémoire de Master
Informatique

Université Mohamed El Bachir El Ibrahimi - Bordj Bou Arréridj

H
HEDJAM Lidia
B
BELOUAHRI Aya

Résumé: The anomaly in network traffic is a crucial issue that can cause significant losses in network security and performance. This prompted us to undertake this work to detect these anomalies accurately and promptly using deep learning techniques. This thesis investigates the use of long short-term memory (LSTM) neural networks, one of the deep learning methods, to detect anomalies in network data flows. LSTMs are well suited to this task thanks to their ability to capture long-term temporal dependencies. Our approach is distinguished by its ability to detect complex and varied anomalies, thus improving the security and efficiency of computer networks. The results show a significant improvement over traditional methods

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft