Estimation Non Paramétrique Dans Un Modèle De Censure Et De Dépendance.
2019
Thèse de Doctorat
Mathématiques

Université Frères Mentouri - Constantine 1

R
Rouabah, Nour El Houda
N
Nemouchi, Nahima

Résumé: The study of existing work shows that many of the asymptotic results obtained in the context of nonparametric statistics for right censored observations are based on the properties of the Kaplan Meier estimator of the survival function. So, since this estimator was generalized by Patilea and Rolin [2006] to the case of the twice censorship model, it became interesting to study the properties of the last estimator (the Patilea-Rolin estimator), this is the main purpose of this thesis. More precisely, we are interested in this type of censorship with strong mixing processes. In this framework, after deducing the law of the iterated logarithm for the Patilea-Rolin estimator, we show the uniform almost complete convergence of the distribution function estimators, with rate, first for the empirical distribution function based on α-mixing data. Then, in the case of left censorship, and under the same hypothesis of dependence, we specify the rate of this convergence for the estimator of the distribution function (which is deduced from that of Kaplan-Meier by inverting the time). We then exploit these two previous results to obtain the rate of the almost complete convergence of the Patilea-Rolin estimator as well as the kernel estimator of the cumulative failure rate, based on α- mixing data. To support our theoretical study, we present a simulation study accompanied by an application on real data. Starting from the result of Patilea and Rolin [2006], the kernel estimation of the density function for this model, was proposed by Kitouni et al. [2015]. Based on our previous results, we then continue the study of this last estimator under the condition of strong mixing. We establish its rate of the uniform almost complete convergence as well as that of the kernel failure rate estimator. It should be noted that the rates proposed in this thesis, under the condition of the strong mixing, are identical to those obtained for independent data.

Mots-clès:

mathematiques
probabilités et statistique
α-mélange
censure
convergence presque complété
distribution
densité
taux de hasard
estimateurs non paramétriques
estimateurs à noyau
loi du logarithme itéré
α-mixing
censorship model
almost complete convergence
density
failure rate
nonparametric estimators
kernel estimators
law of the iterated logarithm
الخليط القوي
الحجب
تقارب شبه كامل
التوزيع
الكثافة-نسبة المجازفة
المقدرات غير المقياسية
مقدرات النواة
قانون اللوغارتم المكرر
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft