Modélisation De L'eutrophisation Des Eaux De Surface
2019
Thèse de Doctorat
Génie Rural

École Nationale Superieure Agronomique - Alger

B
Belouz, Khaled

Résumé: La qualité des eaux de surface est l‟un des facteurs clé utilisé dans la gestion et l‟aménagement des ressources en eau, cependant, cet élément n'a pas reçu la considération et l'attention qu'il mérite. Vu la complexité élevée et la non-linéarité de l'écosystème aquatique, la diversité des espèces d'algues, leurs comportement, leurs cycles saisonniers différents d‟une espèce à l‟autres, l'interaction des espèces d‟algues avec leur environnement, les interactions entre les espèces, l'insuffisance de la compréhension des processus, la multiplicité des mécanismes impliqués, le manque de données de bonne qualité, et la haute variabilité saisonnière des charges polluantes déversées dans les retenues de barrages rendent le développement de modèles prédisant la qualité des eaux de barrages et l‟eutrophisation un défi. L'émergence des techniques de l'intelligence artificielle a donné de nombreux résultats encourageants dans le domaine de la gestion et la modélisation de la qualité de l'eau. Cette recherche a pour objectif de contribuer au développement de modèles basés sur les données (data driven model) pour l'étude de l'eutrophisation de retenues de barrages. Certaines conclusions et recommandations de cette étude sont discutées dans ce résumé. Les réseaux de neurones artificiels (RNAs) et les systèmes d‟inférence neuro-flou adaptatifs (ANFIS) permettent de modéliser avec une précision acceptable la concentration de chlorophylle-a en utilisant les données de la qualité de l‟eau disponibles. Les modèles développés peuvent être utilisés comme des outils de simulation de la concentration de chlorophylle-a dans les études de scénarii de réduction des nutriments dans le bassin versant. Les modèles de RNAs et d‟ANFIS sont également capables de simuler, avec une précision élevée, certains indicateurs de l‟eutrophisation tels que le phosphore total et la demande biochimique en oxygène. Pour une modélisation plus fine de l'eutrophisation des retenues de barrages, des intervalles d'échantillonnage plus courts (courts pas du temps) sont recommandés pour améliorer les résultats de la modélisation.

Mots-clès:

eutrophisation
réseaux de neurones artificiels
anfis
modélisation
qualité de l‟eau
chlorophylle-a
phosphore total
demande biochimique en oxygène
écosystème de retenue de barrage
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft