Traitement Par Les Méthodes D’apprentissage Profond De Signaux Physiologiques Pour La Détection Des Stades De Sommeil
2020
Autre
Génie Eléctrique Et Eléctronique

École Nationale Polytechnique - Alger

S
Soukeur, Oussama
A
Ait Mesbah, Mehdi

Résumé: La reconnaissance automatique des stades de sommeil est un sujet de recherche qui fait son chemin dans de nombreux domaines y compris l’apprentissage profond. Cette tache reste problématique étant donnée l’utilisation d’un matériel encombrant et coûteux nécessitant la présence du patient dans l’hôpital. Au cours de ces dernières années de nombreuses approches ont été proposé pour la classification des états de sommeil à partir de signaux ECG, enregistrer par des appareils portatifs à domicile beaucoup moins encombrant. Cependant dans le but d’améliorer la classification des états de sommeil nous avons été menés à établir une étude approfondie des approches les plus utilisée dans la classification en apprentissage profond. Cette étude a abouti à la mise en œuvre d’une méthode de classification utilisant un modèle hybride composé de réseaux de neurones récurent à mémoire courte et long terme LSTM, réseaux de neurones convolutives CNN et modèle de Markov caché HMM. Afin de valider nos approches nous avons utilisé des bases de données MIT-BIH disponible sur physionet.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft