Kernelized Relative Entropy For Direct Fault Detection In Industrial Rotary Kilns
Résumé: The objective of this work is to use a 1-dimensional signal that reflects the dissimilarity between multidimensional probability densities for detection. With the modified Kullback-Leibler divergence, faults can be directly detected without any normality assumption or joint monitoring of related test statistics in different subspaces such as the T2 and SPE in principal component analysis–based methods. To relieve the difficulty associated with asymptotic high-dimensional density estimates, we have estimated the density ratio rather than the densities themselves. This can be done by approximating the density ratio with kernel basis functions and learn the weights from the available data. The developed algorithm is generic and can be applied to any industrial system as long as process historical data is available. As a case study, we apply this algorithm to a real rotary kiln in operation, which is an integral part of the cement manufacturing plant of Ain El Kebira, Algeria.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!