Study And Implementation Of U-net Encoder-decoder Neural Network For Brain Tumors Segmentation
2023
Autre
Communications Internationales

Université M'hamed Bougara - Boumerdes

C
Cherifi, Dalila
B
Bekkouche, Abdelghani
B
Bayou, Meroua
B
Benmalek, Assala
M
Mechti, Ines
B
Bekkour, Belkacem
A
Amine, Chaima
A
Ahmed, Halak

Résumé: Emerging advanced technologies have seen a revolution of applications into medical field, in all its aspects and sides, this has helped healthcare practitioners and empowered them in achieving accurate diagnosis and treatment, specifically with the evolution of computer Aided Diagnosis systems which use image processing techniques, Computer vision,and deep learning applied on different medical images in order to diagnose the image, or sections of the image with particular diseases or illnesses. Medical images of multiples organs or parts of the body (Liver, brain, kidney, skin, etc..) can today be visualized thanks to the advanced medical imaging techniques that exists in the market (MRI, CT, etc…) these technologies uses high energy in order to acquire high quality images but high energy can harm human cells, this is why we us low energy and with this used we get slightly low quality medical images, and here technology intervenes where we can use preprocessing techniques in order to increase image resolution prior to perform diagnosis either by doctor or CAD system. We present in this paper a computer aided diagnosis system that provides an automated brain tissue segmentation applied on 3D MRI images with its four different modalities (T1, T1C, T2, T2 weighted) of BRatS 2020 challenge dataset, by implementing a U-Net like deep neural network which provides information about classification of brain tissue into healthy tissue, Edema, Enhancing tumour, Non enhancing tumour. The model achieved an accuracy of 99.01% and dice coefficient of 47.95% after 35 epochs of training

Mots-clès:

brain tumors
deep learning
medical image analysis
medical image segmentation
segmentation
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Aucun fichier associé


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com