A Framework For Object Classification In Fareld Videos
2014
Articles Scientifiques Et Publications

Centre De Recherche Sur L'information Scientifique Et Technique

S
Setitra, Insaf
L
Larabi, Slimane

Résumé: Object classification in videos is an important step in many applications such as abnormal event detection in video surveillance, traf- fic analysis is urban scenes and behavior control in crowded locations. In this work, propose a framework for moving object classification in farfield videos. Much works have been dedicated to accomplish this task. We overview existing works and combine several techniques to implement a real time object classifier with offline training phase. We follow three main steps to classify objects in steady background videos : background subtraction, object tracking and classification. We measure accuracy of our classifier by experiments done using the PETS 2009 dataset.

Mots-clès:

background subtraction
feature extraction
video analysis
tracking
object classification
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Aucun fichier associé
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft