Lipschitz Operators Represented By Vector Measures
Résumé: In this memory,the concept of Lipschitz Pietsch-p-integral operators, where (1 6 p < 1). These operators are defined as Lipschitz mappings between a metric space and a Banach space. They can be represented by an integral with respect to a vector measure defined on a suitable compact Hausdorff space. We show that this type of operator fits into the theory of composition Banach Lipschitz operator ideals. and a rich factorization theory for these operators, which provides a lot of information about them. This factorization theory is based on the classical Banach spaces C(K); Lp(µ; K) and L1(µ; K), where K is a compact Hausdorff space. We believe that this work provides a new and useful perspective on Lipschitz Pietsch-p-integral operators. We hope that it will be of interest to researchers in functional analysis and operator theory.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!