Hand Gesture And Sign Language Recognition Based On Deep Learning
2023
Mémoire de Master
Informatique

Université Kasdi Merbah - Ouergla

B
BENKADDOUR, Mohammed Kamel
A
Abazi, Yahia
A
Aziza Akram, Zakaria

Résumé: The recognition of Arabic sign language (ArSL) plays a crucial role in removing communication barriers between deaf-mute people and non-sign language speakers. In this study, we propose a dynamic model for Arabic sign language recognition using deep learning (DL) techniques. Our model utilizes a convolutional neural network (CNN) architecture to extract meaningful features from sign language (SL) images, for accurate classification of different signs. We also describe the dataset used for training and evaluating the model, which includes a collection of Arabic sign language images. After extensive experimentation and evaluation, the results prove the effectiveness of the proposed methods, achieving high recognition accuracy across multiple ArSL gestures.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft