Multi-class Eeg Signal Classification For Epileptic Seizure Diagnosis
2020
Articles Scientifiques Et Publications

Université M'hamed Bougara - Boumerdes

C
Cherifi, Dalila
A
Afoun, Laid
I
Iloul, Zakaria
B
Boukerma, Billal
A
Adjerid, Chaouki
B
Boubchir, Larbi
N
Nait-Ali, Amine

Résumé: EEG signal recordings are increasingly replacing the old methods of diagnosis in medical field of many neurological disorders. Our contribution in this article is the study and development of EEG signal classification algorithms for epilepsy diagnosis using one rhythm; for classification, an optimum classifier is proposed with only when used one rhythm so that both execution time and number of features are reduced. We used wavelet packet decomposition (WPD) to extract the five rhythms of brain activity from the public Epilepsy-EEG recordings in order to represent each signal with features vector; then we applied on it the well-known classification methods. A statistical study is done to validate the different algorithms

Mots-clès:

eeg
wavelet packet decomposition
features extraction
epilepsy diagnosis
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft